
Journal of Computational Physics172,71–98 (2001)

doi:10.1006/jcph.2001.6812, available online at http://www.idealibrary.com on

A Boundary Condition Capturing Method
for Incompressible Flame Discontinuities1

Duc Q. Nguyen,∗ Ronald P. Fedkiw,† and Myungjoo Kang∗
∗Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095;

and†Computer Science Department, Stanford University, Stanford, California 94305
E-mail: †fedkiw@cs.stanford.edu

Received June 26, 2000; revised April 5, 2001

In this paper, we propose a new numerical method for treating two-phase incom-
pressible flow where one phase is being converted into the other, e.g., the vaporization
of liquid water. We consider this numerical method in the context of treating dis-
continuously thin flame fronts for incompressible flow. This method was designed
as an extension of the Ghost Fluid Method (1999,J. Comput. Phys.152, 457) and
relies heavily on the boundary condition capturing technology developed in Liu
et al. (2000,J. Comput. Phys.154, 15) for the variable coefficient Poisson equation
and in Kanget al. (in pressJ. Comput. Phys.) for multiphase incompressible flow.
Our new numerical method admits a sharp interface representation similar to the
method proposed in Helenbrooket al. (1999,J. Comput. Phys.148, 366). Since the
interface boundary conditions are handled in a simple and straightforward fashion,
the code is very robust, e.g. no special treatment is required to treat the merging of
flame fronts. The method is presented in three spatial dimensions, with numerical
examples in one, two, and three spatial dimensions.c© 2001 Academic Press

1. INTRODUCTION

Consider multiphase incompressible flow including the effects of viscosity, surface ten-
sion, and gravity. Any numerical approach to this problem needs both a method for tracking
(or capturing) the interface location as well as a method for enforcing the appropriate bound-
ary conditions at the tracked interface. See [1, 19, 23] (and [2]) for numerical methods that
used front tracking, volume of fluid and level set methods, respectively, for tracking the
location of the multiphase interface. All of these methods use aδ-function formulation to
enforce the appropriate boundary conditions at the multiphase interface. Thisδ-function for-
mulation was originally proposed as part of the “immersed boundary” method for computing
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solutions to the incompressible Navier–Stokes equations in the presence of a submersed
elastic interface; see [16, 17]. The numerical methods in [1, 2, 19, 23] all extend theδ-
function formulation of [16] to treat multiphase incompressible flow.

One drawback of theδ-function formulation is that it smears out numerical quantities
across the interface producing a continuous profile for the density, viscosity, and pressure.
This numerical smearing can be problematic, e.g., a continuous pressure profile does not
adequately model surface tension forces and [1, 2, 19, 23] need to add source terms to the
right-hand side of the momentum equations in order to numerically model these forces. An
alternative strategy for enforcing the interface boundary conditions is based on the Ghost
Fluid Method (GFM) of [4]. In [13], the authors extended the GFM to treat the variable
coefficient Poisson equation in the presence of an immersed interface. In [12], the authors
used the method from [13] to devise a numerical method for multiphase incompressible
flow that allows for a nonsmeared numerical representation of the density, viscosity, and
pressure. Moreover, since surface tension was modeled directly with a jump in pressure
across the interface, there was no need to add source terms to the right-hand side of the
momentum equations as was done in [1, 2, 19, 23].

For multiphase incompressible flow, the interface moves with local fluid velocity only
and individual fluid particles do not cross the interface. In this paper, we consider interfaces
where a reaction is taking place and the interface moves with the local unreacted fluid
velocity plus a reaction term that accounts for the conversion of one fluid into the other.
That is, we account for the movement of material across the interface. Consider, for example,
an interface separating liquid and gas regions where the liquid is actively vaporizing into
the gaseous state. See [11] for a front tracking approach to this problem using aδ-function
formulation to treat the interface boundary conditions. See [22] and [24] for level set based
and volume of fluid based (respectively) approaches to this same problem also using a
δ-function formulation. References [11, 22, 24] solve an equation for the temperature in
order to determine the rate at which one material is converted into another.

As another example of reacting interfaces, consider combustion in premixed flames.
Assuming that the flame front is infinitely thin allows one to treat the flame front as a dis-
continuity separating two incompressible flows. The unreacted material undergoes reaction
as it crosses the interface producing a lower density (higher volume) reacted material. See
[20] for a front tracking approach to this problem using aδ-function formulation. The flame
speeds in [20] were determined with the aid of the G-equation [14, 25], so an extra equation
for the temperature was not needed.

In the examples mentioned above, the density of the incompressible material tends to be
different on different sides of the interface. The material must instantaneously expand as it
crosses the interface implying that the normal velocity is discontinuous across the interface,
i.e. in addition to discontinuity of the density, viscosity, and pressure. The methods in [11,
20, 22, 24] are all based on theδ-function formulation and thus smear out this velocity jump
forcing a continuous velocity field across the interface. This can be quite problematic since
this numerical smearing adds a compressible character to the flow field near the interface, i.e.
the divergence-free condition is not exactly satisfied in each separate subdomain. In addition,
difficulties arise when trying to determine the interface velocity which depends in part on
the local velocity of the unreacted material. Near the interface, the velocity of the unreacted
material contains largeO(1) numerical errors where it has been nonphysically forced to
be continuous with the velocity of the reacted material. Partial solutions to these problems
were proposed in [9] where the authors were able to remove the numerical smearing of the
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normal velocity obtaining a sharp interface profile. Unfortunately, the interface treatment in
[9] was considerably intricate and the calculation had to be terminated if two flame fronts
were significantly close to each other, i.e. this method cannot handle the simple merging of
flame discontinuities. On the other hand, this method was used to obtain rather impressive
results in [10] for problems in which the flame fronts do not merge or become highly curved.

In this paper, we propose a new numerical method for treating two-phase incompressible
flow where one phase is being converted into the other. This method was designed as an
extension of the Ghost Fluid Method [4] and relies heavily on the boundary condition
capturing technology developed in [13] for the variable coefficient Poisson equation and in
[12] for multiphase incompressible flow. Our new numerical method admits a sharp interface
representation similar to the method proposed in [9]. In addition, the interface boundary
conditions are handled in a simple and straightforward fashion making the code very robust,
e.g., no special treatment is required to treat the merging of flame fronts. Numerical results
are presented in one, two, and three spatial dimensions.

2. EQUATIONS

2.1. Euler Equations

The basic equations for inviscid incompressible flow are

ρt + EV · ∇ρ = 0 (1)

ut + EV · ∇u+ px

ρ
= 0 (2)

vt + EV · ∇v + py

ρ
= 0 (3)

wt + EV · ∇w + pz

ρ
= 0, (4)

wheret is the time, (x, y, z) are the spatial coordinates,ρ is the density,EV = 〈u, v, w〉 is
the velocity field,p is the pressure, and∇ = 〈 ∂

∂x ,
∂
∂y ,

∂
∂z〉. In addition, the divergence-free

condition is∇ · EV = 0. The equations for the velocities can be written in condensed notation
as a row vector

EV + ( EV · ∇) EV + ∇ p

ρ
= 0. (5)

2.2. Interface Velocity

When treating multiphase incompressible flow, one needs an expression for the velocity,
EW, of the interface. If the interface is a simple contact discontinuity, then the interface
moves with the local fluid velocity only, i.e.,EW = EV . Many numerical methods use only
the normal velocity of the interface, i.e.,EW = D EN whereD is the normal component of
the interface velocity andEN=〈n1, n2, n3〉 is the local unit normal to the interface. In the
case of a contact discontinuity,D = VN = EV · EN.

Throughout this text,unreactedand reactedincompressible flows are separated by an
interface across which the unreacted material is converted into the reacted material. The “u”
and “r ” subscripts are used to refer to the unreacted and reacted materials, respectively. The
normal component of the interface velocity is calculated by adding the unreacted local fluid
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velocity to the flame speed,S. That is,D = (VN)u + Swhere(VN)u is calculated using the
velocity of the unreacted material only. This is important to note sinceVN is discontinuous
across the interface.

In the numerical examples, the flame speed is defined asS= So + σκ, whereSo andσ
are constants andκ is the local curvature of the interface.

2.3. Jump Conditions

Conservation of mass and momentum implies the standard Rankine–Hugoniot jump
conditions across the interface

[ρ(VN − D)] = 0 (6)[
ρ(VN − D)2+ p

] = 0, (7)

where [A] = Ar − Au defines “[·]” as the jump in a quantity across the interface. When
D 6= VN , the tangential velocities are continuous as well, i.e., [VT1] = [VT2] = 0, whereT1

andT2 are the unit tangent vectors. This is true as long asS 6= 0, i.e., it is true as long as
the front is not a contact discontinuity. In the case of a contact discontinuity,S= 0 and
the tangential velocities are completely uncoupled across the interface reducing equations
6 and 7 to [VN ] = [ p] = 0. For more details, see [5].

Denoting the mass flux in the moving reference frame (speedD) by

M = ρr ((VN)r − D) = ρu((VN)u − D) (8)

allows Eq. (6) to be rewritten as [M ] = 0. Furthermore,

M = −ρuS (9)

follows from substitutingD = (VN)u + S into Eq. (8).
Starting with [D] = 0, [

ρVN − ρ(VN − D)

ρ

]
= 0 (10)[

ρVN − M

ρ

]
= 0 (11)

and

[VN ] = M

[
1

ρ

]
, (12)

where the last equation follows since [M ] = 0. It is more convenient to write

[ EV ] = M

[
1

ρ

]
EN (13)

as a summary of Eq. (12) and [VT1] = [VT2] = 0. Taking the dot product of Eq. (13) andEN
results in Eq. (12), while taking the dot product of Eq. (13) andET1 or ET2, results in [VT1] = 0
and [VT2] = 0, respectively.

Equation (7) can be rewritten as[
M2

ρ
+ p

]
= 0 (14)
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or as

[ p] = −M2

[
1

ρ

]
(15)

again using [M ] = 0.

2.4. Level Set Equation

The level set equation

φt + EW · ∇φ = 0 (16)

is used to keep track of the interface location as the set of points whereφ = 0. The unreacted
and reacted materials are then designated by the points whereφ > 0 andφ ≤ 0, respectively.
Usingφ ≤ 0 instead ofφ = 0 for the reacted points removes the measure zero ambiguity
of points that happen to lie on the interface. In this sense, the numerical interface lies in
betweenφ = 0 and the positive values ofφ and can be located numerically by finding the
zero level ofφ. To keep the values ofφ close to those of a signed distance function, i.e.,
|∇φ| = 1, the reinitialization equation

φτ + S(φo)(|∇φ| − 1) = 0 (17)

is iterated for a few steps in ficticious time,τ . The level set function is used to compute the
normal

EN = ∇φ|∇φ| (18)

and the curvature

κ = −∇ · EN (19)

in a standard fashion. For more details on the level set function, see [4, 12, 15, 19].

3. NUMERICAL METHOD

A standard MAC grid is used for discretization, wherepi, j,k, ρi, j,k andφi, j,k exist at the
cell centers (grid points) andui±1/2, j,k, vi, j±1/2,k, andwi, j,k±1/2 exist at the appropriate cell
walls. See [7] and [18] for more details.

3.1. Extending the Velocity Field

Since the normal velocity is discontinuous across the interface, one has to use caution
when applying numerical discretizations near the interface. For example, when discretizing
the unreacted fluid velocity near the interface, one should avoid using values of the reacted
fluid velocity. Following the Ghost Fluid Methodology in [4], a band of ghost cells on the
reacted side of the interface is populated with unreacted ghost velocities that can be used
in the discretization of the unreacted fluid velocity. Similarly, reacted ghost velocities are
defined on a band of ghost cells on the unreacted side of the interface and used in the
discretization of the reacted fluid velocity.
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The termφ is defined at the grid nodes, and its values on the offset MAC grid are computed
with simple averaging, e.g.,φi+1/2, j,k = φi, j,k +φi+1, j,k

2 . The MAC grid values ofφ can then
be used to determine which values of the velocity field correspond to unreacted material
and which correspond to reacted material. At each MAC grid location that corresponds to
a reacted fluid velocity, the jump conditions in Eq. (13) are used to define a new unreacted
ghost velocity according to

uG
u = ur − M

(
1

ρr
− 1

ρu

)
n1 (20)

vG
u = vr − M

(
1

ρr
− 1

ρu

)
n2 (21)

and

wG
u = wr − M

(
1

ρr
− 1

ρu

)
n3, (22)

wheren1, n2, andn3 are computed at the appropriate MAC grid locations using simple
averaging, e.g.,(n1)i+1/2, j,k = (n1)i, j,k + (n1)i+1, j,k

2 . Similarly, reacted ghost velocities are cal-
culated at unreacted MAC grid locations using

uG
r = uu + M

(
1

ρr
− 1

ρu

)
n1 (23)

vG
r = vu + M

(
1

ρr
− 1

ρu

)
n2 (24)

and

wG
r = wu + M

(
1

ρr
− 1

ρu

)
n3. (25)

3.2. Level Set Equation

The level set function is evolved in time fromφn toφn+1 using nodal velocities,EW = D EN,
where EN is computed at each grid node using Eq. (18) as described in [12]. In general,D =
(VN)u + Swhere(VN)u is the normal velocity of the unreacted material andS= So + σκ
is the flame speed. IfS depends on the local curvature of the front, i.e.,σ 6= 0, then EW is
split into a purely convective componentEWc = ((VN)u + So) EN and a curvature component
σκ EN so that Eq. (16) can be rewritten as

φt + EWc · ∇φ = −σκ|∇φ|, (26)

with the curvature term isolated on the right-hand side. Thenκ is discretized according to
Eq. (19) as discussed in [12], and|∇φ| is discretized with standard central differencing.
It is interesting to note that an alternate definition ofEWc = EVu + So EN can be used in Eq.
(26) as well. Both of the two nonequivalent definitions ofEWc give the same result in the
dot product EWc. ∇φ since they only differ in the direction tangential to∇φ.

The normal velocity of the unreacted material,(VN)u, is needed in a band about the
front so that Eq. (26) can be solved locally to update the interface location. The nodal
values of the unreacted velocity,EVu, are determined using simple averaging of the MAC
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grid values making use of the appropriate ghost values (defined above) where needed, i.e.,
ui, j,k = ui−1/2, j,k + ui+1/2, j,k

2 , vi, j,k = vi, j−1/2,k + vi, j+1/2,k

2 , andwi, j,k = wi, j,k−1/2+wi, j,k+1/2

2 are used to
calculate the nodal values of the unreacted velocity. Then(VN)u = EVu · EN is used to define
the unreacted normal velocity at each grid node.

Detailed discretizations for the convective part of Eq. (26), i.e.,EWc · ∇φ, and for Eq. (17)
are given in [4]. Note that the fifth-order WENO discretization from [4] is used to discretize
the convective part of Eq. (26) and the spatial terms in Eq. (17) for the numerical examples
in this paper.

3.3. Projection Method

First, EV∗ = 〈u∗, v∗, w∗〉 is defined by

EV∗ − EVn

1t
+ ( EV · ∇) EV = 0, (27)

and then the velocity field at the new time step,EVn+1 = 〈un+1, vn+1, wn+1〉, is defined by

EVn+1− EV∗
1t

+ ∇ p

ρ
= 0, (28)

so that combining Eqs. 27 and 28 to eliminateEV∗ results in Eq. (5). Taking the divergence
of Eq. (28) gives

∇ ·
(∇ p

ρ

)
= ∇ ·

EV∗
1t

(29)

after setting∇ · EVn+1 to zero. Equations (28) and (29) can be rewritten as

EVn+1− EV∗ + ∇ p∗

ρ
= 0 (30)

and

∇ ·
(∇ p∗

ρ

)
= ∇ · EV∗ (31)

eliminating their dependence on1t by using a scaled pressure,p∗ = p1t . See [3, 7, 18]
for more details.

3.4. Convection Terms

The MAC grid storesu values atExi±1/2, j,k. Updatingu∗i±1/2, j,k in Eq. (27) requires the
discretization ofEV · ∇u at Exi±1/2, j,k. First, simple averaging can be used to defineEV at
Exi±1/2, j,k, i.e.,

vi+ 1
2 , j,k
=
vi, j− 1

2 ,k
+ vi, j+ 1

2 ,k
+ vi+1, j− 1

2 ,k
+ vi+1, j+ 1

2 ,k

4
(32)
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FIG. 1. Stationary flame.

FIG. 2. Stationary flame with a poor choice of initial data.
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FIG. 3. Merging flames.

FIG. 4. Separating flames.
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FIG. 5. Merging planar flames in two spatial dimensions.

and

wi+ 1
2 , j,k
=
wi, j,k− 1

2
+ wi, j,k+ 1

2
+ wi+1, j,k− 1

2
+ wi+1, j,k+ 1

2

4
(33)

definev andw at Exi+1/2, j,k while u is already defined there. Then theEV · ∇u term on the
offsetExi±1/2, j,k grid can be discretized in the same fashion as theEV · ∇φ term on the regular
Exi, j,k grid using the method outlined in [4] for Eq. (16). The termsv∗i, j±1/2,k andw∗i, j,k±1/2

are updated in a similar manner. For more details, see [12]. Note that the third-order ENO
discretization from [4] is used in the examples section.

It is important to note that the ghost values of the extended velocity field are used in
this discretization ofEV∗. That is, unreacted fluid velocities are discretized with the aid of
the unreacted ghost velocities avoiding the use of any reacted velocities that would pollute
the solution. Similarly, the reacted fluid velocities are discretized using their ghost values
avoiding the unreacted fluid velocities in the discretization.

Once again, using the GFM philosophy [4], values forEV∗u and EV∗r are determined on the
appropriate side of the interfaceandon a band including the interface. For example,EV∗u is
computed on both the unreacted side of the interface and on a band of ghost cells on the
reacted side of the interface. This is done to alleviate problems that occur when the interface
moves through the grid, changing the character of the solution from unreacted to reacted or
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FIG. 6. Darrieus–Landau instability—exponential growth of the amplitude.

FIG. 7. Large amplitude perturbation—time evolution.
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FIG. 8. Large amplitude perturbation—converging to diverging velocity field with a discontinuous normal
velocity across the interface.

vice versa. As the interface moves, as dictated by the evolution ofφn to φn+1, one always
has appropriate values forEV∗u and EV∗r where needed.

3.5. Poisson Equation

Once EV∗ has been updated with Eq. (27), the right-hand side of Eq. (31) is discretized
using standard central differencing, e.g.,

(u∗x)i, j,k =
u∗

i+ 1
2 , j,k
− u∗

i− 1
2 , j,k

1x
(34)

is used to computeu∗x. Once again, the ghost values of the extended velocity fields are used
to compute these derivatives so that unreacted and reacted velocities are not incorrectly
mixed. Then the techniques presented in [13] for the variable coefficient Poisson equation
are used to solve Eq. (31) for the pressure at the grid nodes. The resulting pressure is used
to find EVn+1 in Eq. (30), taking care to compute the derivatives of the pressure inexactly
the same way as they were computed in Eq. (31) using the techniques in [13].

The techniques in [13] require a level set function to describe the interface location. We use
φn+1 as opposed toφn, since we wish to find the pressure that will makeEVn+1 divergence-free
in Eq. (30). This implies that both Eqs. (30) and (31) should useρn+1 = ρ(φn+1) when
deciding whether to useρu or ρr at a specific grid point.
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FIG. 9. Flame vortex interaction—initial flame and vortex locations.

Note that one can set [px

ρ
] = [ py

ρ
] = [ pz

ρ
] = 0 when solving the Poisson equation using

the method in [13]. Since the full Eqs. (2), (3), and (4) are continuous across the interface,
one can take the divergence of the full equations without considering jump conditions. On
the other hand, the jump in pressure defined in equation 15 needs to be accounted for when
solving the Poisson equation with the method in [13]. Equation 15 is rewritten as

[ p∗] = −1t M2

(
1

ρr
− 1

ρu

)
(35)

for use Eq. (31). The [p∗] is computed at each grid node.
After discretizing the Poisson equation for the pressure, the resulting system of lin-

ear equations is solved with a preconditioned conjugate gradient (PCG) method using an
incomplete Choleski preconditioner [6]. The PCG algorithm is applied once for every Euler
time step, or a total of three times for a third-order Runge–Kutta cycle.

3.6. Runge–Kutta

Since both second- and third-order TVD Runge–Kutta schemes [21] can be written as a
convex combination of simple Euler steps, see [12, 21], it is straightforward to generalize
the first-order time discretization discussed so far to third-order TVD Runge–Kutta. One



84 NGUYEN, FEDKIW, AND KANG

FIG. 10. Flame vortex interaction—time evolution.

difficulty in implementing Runge–Kutta methods in problems with interfaces arises when
nodal values change character as the interface moves (e.g., one may inadvertently aver-
age unreacted and reacted velocity values). However, the use of the Ghost Fluid Method
circumvents this difficulty.

While the values of the level set can be averaged directly, one has to be careful when
averaging the velocity field in order to ensure that unreacted and reacted velocities are not
accidently averaged together. Initially,EVu is defined on one side of the interface andEVr

is defined on the other. Each of these velocity fields can be extended to a band about the
interface using the appropriate jump conditions as outlined above. It is straightforward to
use Eq. (27) to obtainEV∗u and EV∗r in the appropriate locations including a band about the
interface. However, solving Eq. (28) forEVn+1

u and EVn+1
r only gives updated velocity values

on the appropriate side of the interface and does not give valid values forEVn+1
u and EVn+1

r on
a band including the interface. If the timen values and timen+ 1 values represent different
Runge–Kutta stages, they cannot be averaged unless the timen+ 1 values are extended to
include a band about the interface. Luckily, we can easily extend these values to a band about
the interface using our standard velocity extension procedure outlined above. The point is
that one should apply Runge–Kutta averaging to the extended velocity fields in order to
avoid unwanted errors that can result from mixing the unreacted and reacted velocity fields.
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FIG. 11. Flame vortex interaction—grid refinement.

3.7. Adaptive Time Stepping

Adaptive time stepping is used where the overall time step is chosen as the minimum of
the incompressible time step and the level set time step, i.e.,

1t = .5 min(1t I ,1t L) (36)

where we have chosen a CFL restriction of 0.5. For incompressible flow, the convective
time step restriction

1t I

( |u|
1x
+ |v|
1y
+ |w|
1z

)
≤ 1 (37)

needs to be satisfied at every grid point. For the level set equation, i.e., Eq. (26), the convective
time step restriction

1t L(Ccfl+ Kcfl) ≤ 1 (38)

needs to be satisfied at every grid point where

Ccfl = |w1|
1x
+ |w2|
1y
+ |w3|
1z

, (39)
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FIG. 12. Flame vortex interaction—secondary vorticity generation.

with EWc = 〈w1, w2, w3〉 is for the convection terms and

Kcfl = σ
(

2

(1x)2
+ 2

(1y)2
+ 2

(1z)2

)
(40)

is for the curvature terms.

4. EXAMPLES

In the one-dimensional examples, the Conjugate Gradient method is used without the
incomplete Choleski preconditioner, since the incomplete Choleski factorization does not
work in the one-dimensional case. All of the two dimensional examples utilize the PCG
method with the incomplete Choleski preconditioner. Unless otherwise specified, the unre-
acted and reacted densities areρu = 1 andρr = 0.2, respectively.

4.1. One Spatial Dimension

All of the one dimensional examples are computed with 100 grid points on a [−1, 1]
domain. Exact solutions are shown as solid lines in the figures.

4.1.1. Example 1

Consider a flame with speedS= 1 initially located atx = 0. The unreacted gas flows
in from the right with a velocity ofu = −1. A Dirichlet, p = 0, boundary condition is
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FIG. 13. Flame vortex interaction—secondary vorticity generation; 140 by 280 grid.

specified on the left-hand side of the domain, and a Neumann pressure boundary condition
is used on the right-hand side of the domain to keep the inflow velocity fixed. Figure 1 shows
the computed solution for this stationary flame. The calculation for Fig. 1 may seem rather
trivial, since the initial data is already the exact solution. In Fig. 2, the same calculation is
carried out starting with erroneous initial data. Even with this poor initial guess, the correct
solution is still obtained.

4.1.2. Example 2

Consider two flames both with speedS= 1 initially located atx = −0.5 andx = 0.5.
The unreacted material is at rest in the center of the domain. Dirichlet,p = 0, bound-
ary conditions are specified at both ends of the domain. Initially, the reacted velocities on
the left- and right-hand sides of the domain were specified asu = −4 andu = 4, respec-
tively. Figure 3 shows the computed velocity, and illustrates the ability of our algorithm
to treat merging in one dimension. After merging, the domain contains a single-phase in-
compressible fluid which must have a constant velocity. In the case of compressible flow,
a finite speed of propagation rarefaction wave would lower the velocity to the average
of the two reacted velocities (zero in this case). For incompressible flow, the “rarefaction
wave” moves at infinite speed and the velocity drops to zero in one time step as shown in
Fig. 3.
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FIG. 14. Flame vortex interaction—secondary vorticity generation; 70 by 140 grid.

4.1.3. Example 3

Consider two flames both with speedS= 1 initially located atx = −0.5 andx = 0.5.
The reacted material is at rest in the center of the domain and the unreacted material is
flowing in with speed|u| = 4 from both boundaries. Dirichlet,p = 0, boundary conditions
are specified at both ends of the domain. Figure 4 shows the computed solution as the flame
front travels outward.

4.2. Two Spatial Dimensions

4.2.1. Example 4

Consider two planar flames both with speedS= 1 initially located atx = 0.25 and
x = 0.75 in a [0, 1]× [0, 1] domain with the unreacted material at rest in the center
of the domain. Dirichlet,p = 0, boundary conditions were used on the right- and left-
hand sides of the domain, i.e., in thex-direction, and periodic boundary conditions were
used in they-direction. Initially, the reacted velocities on the left- and right-hand sides
of the domain were specified asEV = 〈−4, 0〉 and EV = 〈4, 0〉, respectively. This exam-
ple is the two-dimensional equivalent of Example 2 above and illustrates the merging
of two planar flames in two spatial dimensions. Results for thex-component of the ve-
locity field are shown in Fig. 5 using a computational mesh with 50 grid cells in each
direction.
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FIG. 15. Flame vortex interaction—secondary vorticity generation; 35 by 70 grid.

4.2.2. Example 5

In this example we consider the Darrieus–Landau instability withS= 1 in a [0, 2π
5 ] ×

[0, 2π
5 ] domain with 60 grid cells in each direction. The initial flame profile is a small am-

plitude cosine wave defined byy = 0.005 cos(5x)+ π
5 . The unreacted material is flowing

in from the bottom of the domain with an initial velocity ofEV = 〈0, 1〉 and the reacted ma-
terial flowing out of the top of the domain with an initial velocity ofEV = 〈0, 5〉. Dirichlet,
p = 0, boundary conditions were used in they-direction, and periodic boundary conditions
were used in thex-direction. The initial values of|φ| were determined by placing 10,000
points (equally spaced in thex-direction) on the flame front and computing the minimum
distance from this set of points to each Cartesian grid location where the values of the level
set are stored. The sign ofφ was calculated by comparing each Cartesian grid location to
y = 0.005 cos(5x)+ π

5 .
The Darrieus–Landau instability results in exponential growth of the amplitude of the

flame,A(t) = Ao exp(ωt), where

ω = k|M |
ρu + ρr

(√
1+ ρu

ρr
− ρr

ρu
− 1

)
(41)

is the rate of exponential growth, e.g. see [9]. Figure 6 shows a plot of amplitude versus
time (labeledq = 5 whereq = ρu

ρb
) as compared to the exact solution. Initially there is some

disagreement, since we did not start out with the exact Darrieus–Landau velocity field, but
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FIG. 16. Flame vortex interaction—velocity field.

instead used a piecewise constant approximation based on a planar flame profile as outlined
above. Others have noticed this same initial transient when using a planar approximation
for the initial velocity field [8]. Figure 6 shows the results withρr = 1

4 (labeledq = 4) and
ρr = 1

3 (labeledq = 3), respectively. Note that the initial outflow velocity was changed to
EV = 〈0, 4〉 for theq = 4 case and toEV = 〈0, 3〉 for theq = 3 case.

Figure 7 shows the time evolution of the flame front for a large amplitude perturbation
defined byy = 0.2 cos(5x)+ π

5 for theq = 5 case. The velocity field at the final time oft =
0.2 seconds is shown in Fig. 8. The gas flow converges toward the cusp and diverges away
from the cusp, and the normal component of the velocity field is appropriately discontinuous.
Note that the completely continuous velocity field shown in Fig. 6 of [20] damps out the
severity of the converging to diverging nature of the velocity field as it crosses the interface
near the cusp.

4.2.3. Example 6

Consider a planar flame located aty = 7 in a [0, 5]× [0, 10] domain. The unreacted
material is belowy = 7 and is initially at rest while the reacted material is flowing out of
the top of the domain with an initial velocity ofEV = 〈0, 4〉. Dirichlet, p = 0, boundary
conditions were used on the top of the domain and fixed velocity Neumann boundary
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FIG. 17. Flame vortex interaction—velocity field.

conditions were used on the bottom of the domain. Periodic boundary conditions were
used in thex-direction. To suppress the hydrodynamic instability development at short
wavelengths, a curvature term was added to the flame speed to obtainS= 1+ .1κ.

In order to simulate flame vortex interaction, an infinite array of Oseen vortices were added
to the unreacted material centered at spatial locations of(x, y) = (2.5+ 5k, 5.5), wherek
is an integer. This adds only one vortex to the computational domain at(x, y) = (2.5, 5.5)
as shown in Fig. 9, and accounts for the periodicity of the domain in thex-direction.
Vortices very far away have little effect on the computational domain so our initial data only
accounts for the velocity prescribed by the vortices with−500≤ k ≤ 500. Each vortex is
best expressed in polar coordinates with zero velocity in the radial direction and

Vθ = 1.5

2πr

(
1− exp

(
− r 2

.52

))
(42)

in the counterclockwise angular direction, wherer is the distance from the vortex core. The
initial velocity of the unreacted material is determined by summing the contribution from
each of the 1001 vortices considered. See [20] for more details.

Figure 10 shows the time evolution of the flame front for a 140 by 280 grid cell
computation illustrating how the counterclockwise vortices distort the flame front. The
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FIG. 18. Flame vortex interaction—total vorticity in the unburnt gas.

wrinkled wave travels along the flame front from left to right as the flame propagates
through the array of vortices. Since the portion of the flame with positive slope is steeper
than that with negative slope, the magnitude of thex-component of its flame speed is larger.
Consequently, the intersection point between these two flame segments tends to move to

FIG. 19. Flame vortex interaction—total vorticity in the burnt gas.
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FIG. 20. Flame vortex interaction—total|vorticity| in the burnt gas.

the right. This traveling wave slows down later as the deformation becomes more symet-
rical. In Fig. 11, we show the results compared to those obtained after one level and two
levels of grid coarsening. Note the first-order accurate convergence for the flame location.

As the flame moves downward and is distorted by the initial vortex, secondary vorticity
is generated behind the flame front. Figure 12 shows the flame att = 1.5 where part of the
vortex has passed through the flame front and part of it can still be seen just below the flame.
The secondary vorticity is positive on the right and left where the flame front has negative
slope. Conversely, the secondary vorticity is negative in the center where the flame front has

FIG. 21. Merging circular flames—time evolution of the flame location.
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FIG. 22. Merging circular flames—velocity field before merging.

positive slope. In Fig. 11 att = 1, the flame surface is perturbed with the disturbed middle
segment having a positive slope. This orientation is due to the counterclockwise rotation
of the vortex. This flame orientation subsequently generates a triple vorticity configuration
with alternating signs on the burnt side of the flame characterized by positive vorticity
behind the negatively sloped segments and negative vorticity behind the positively sloped
segments. The highest vorticity is found to be at the flame tip where the flame front is most
wrinkled. With further flame wrinkling, the magnitude of this flame-generated vorticity
rapidly becomes higher than that of the initial vortex. Thus, as the flame propagates through
the vortex, it continuously eliminates the initial radially symmetric vorticity substituting
it with the triple vorticity configuration until the initial vortex core is totally wiped out at
t = 1.9. Figure 13 shows the secondary vorticity at a later time oft = 1.9. To get some idea

FIG. 23. Merging circular flames—velocity field after merging.
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FIG. 24. Merging circular flames—velocity field later in time.

of how the vorticity behaves at different levels of grid resolution, Figs. 14 and 15 show the
vorticity at t = 1.9 obtained with one level and two levels of grid refinement, respectively.
Finally, Figs. 16 and 17 show the velocity fields att = 1.5 andt = 1.9, respectively, for the
coarsest 35× 70 grid.

In order to see how the secondary vorticity generation proceeds in time, Figs. 18 and 19
show the total vorticity in the unreacted and reacted regions, respectively, as a function of
time. Note that there is an initial startup error in the vorticity (and velocity) since the array
of vortices are only initialized in the unburnt gas. This initial transient dies out quickly and
could be avoided by initializing the vorticity in the burnt gas as well. Finally, since both

FIG. 25. Merging circular flames—grid refinement.
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positive and negative vorticity increases the local turbulence, Fig. 20 shows the sum of the
magnitudeof vorticity in the reacted material as a function of time.

4.2.4. Example 7

Consider two circular flames centered at(x, y) = (.6, .5) and (x, y) = (.9, .5) both
with radiusr = .1 in a [0, 1.5]× [0, 1] domain with the reacted material inside the cir-
cles and the unreacted material outside the circles. The flame speed is given byS=
1+ .01κ, and Dirichlet,p = 0, boundary conditions were used on all sides of the domain.
Figure 21 shows the time evolution of the flame front for a 60× 40 grid cell computation.
Figures 22, 23, and 24 show the velocity fields at different points in time. Note that the
topological change (merging) requires no special treatment. Figure 25 shows the computa-
tion results for the 60× 40 grid cell computation along with those obtained after one level
and two levels of grid refinement. Note the first-order accurate convergence for the flame
location.

4.3. Three Spatial Dimensions

4.3.1. Example 8

Consider two spherical flames centered at(x, y, z) = (.6, .5, .5) and(x, y, z) = (.9, .5,
.5) both with radiusr = .1 in a [0, 1.5]× [0, 1]× [0, 1] domain with reacted material
inside the spheres and unreacted material outside the spheres. The flame speed is given
by S= 1+ .01κ, and Dirichlet, p = 0, boundary conditions were used on all sides of
the domain. This is the three dimensional equivalent of Example 7. Figure 26 shows the
evolution of the flame front in time for a 90× 60× 60 grid cell calculation illustrating the
ease of merging in three spatial dimensions.

FIG. 26. Merging spherical flames.
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5. CONCLUSION

A new simple numerical method based on the level set method and ghost fluid method was
developed to simulate two-phase incompressible flow where one material is being converted
into another. We presented this method in the context of premixed flame simulations. The
flame was assumed to be a surface of discontinuity separating the reacted and unreacted
gases, and propagating with a prescribed flame velocity. The incompressible Euler equations
were solved on a stationary finite difference grid for both the reacted and the unreacted gases.
The velocity and other material properties were modeled with jump discontinuities across
the flame front where appropriate.

We demonstrated the accuracy and fidelity of the method by comparing the numerical
results with exact solutions for a steady flame and the Darrieus–Landau instability. The
robustness of the method was demonstrated by the simplicity with which flame fronts can
merge. The method is fairly easily to implement and was extended to three spatial dimen-
sions to treat a simple merging problem. Using this new numerical method, we studied the
interaction of a flame and vortex with the objective of gaining further insight into the funda-
mental mechanisms governing flame generated vorticity resulting from baroclinic torque.
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