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In this paper, we propose a hew numerical method for treating two-phase incom-
pressible flow where one phase is being converted into the other, e.g., the vaporization
of liquid water. We consider this numerical method in the context of treating dis-
continuously thin flame fronts for incompressible flow. This method was designed
as an extension of the Ghost Fluid Method (1929Comput. Physl52, 457) and
relies heavily on the boundary condition capturing technology developed in Liu
et al. (2000,J. Comput. Physl54, 15) for the variable coefficient Poisson equation
and in Kanget al. (in pressJ. Comput. Phy3 for multiphase incompressible flow.

Our new numerical method admits a sharp interface representation similar to the
method proposed in Helenbroekal. (1999,J. Comput. Physl48 366). Since the
interface boundary conditions are handled in a simple and straightforward fashion,
the code is very robust, e.g. no special treatment is required to treat the merging of
flame fronts. The method is presented in three spatial dimensions, with numerical
examples in one, two, and three spatial dimensiorsz2001 Academic Press

1. INTRODUCTION

Consider multiphase incompressible flow including the effects of viscosity, surface t
sion, and gravity. Any numerical approach to this problem needs both a method for track
(or capturing) the interface location as well as a method for enforcing the appropriate bou
ary conditions at the tracked interface. See [1, 19, 23] (and [2]) for numerical methods t
used front tracking, volume of fluid and level set methods, respectively, for tracking t
location of the multiphase interface. All of these methods u&denction formulation to
enforce the appropriate boundary conditions at the multiphase interfacé-fTimistion for-
mulation was originally proposed as part of the “immersed boundary” method for computi
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solutions to the incompressible Navier—Stokes equations in the presence of a subme
elastic interface; see [16, 17]. The numerical methods in [1, 2, 19, 23] all extertd the
function formulation of [16] to treat multiphase incompressible flow.

One drawback of thé-function formulation is that it smears out numerical quantities
across the interface producing a continuous profile for the density, viscosity, and press
This numerical smearing can be problematic, e.g., a continuous pressure profile does
adequately model surface tension forces and [1, 2, 19, 23] need to add source terms t
right-hand side of the momentum equations in order to numerically model these forces.
alternative strategy for enforcing the interface boundary conditions is based on the Gt
Fluid Method (GFM) of [4]. In [13], the authors extended the GFM to treat the variabl
coefficient Poisson equation in the presence of an immersed interface. In [12], the autl
used the method from [13] to devise a numerical method for multiphase incompressi
flow that allows for a nonsmeared numerical representation of the density, viscosity, :
pressure. Moreover, since surface tension was modeled directly with a jump in press
across the interface, there was no need to add source terms to the right-hand side ¢
momentum equations as was donein [1, 2, 19, 23].

For multiphase incompressible flow, the interface moves with local fluid velocity onl
and individual fluid particles do not cross the interface. In this paper, we consider interfa
where a reaction is taking place and the interface moves with the local unreacted f
velocity plus a reaction term that accounts for the conversion of one fluid into the oth
Thatis, we account for the movement of material across the interface. Consider, for exan
an interface separating liquid and gas regions where the liquid is actively vaporizing i
the gaseous state. See [11] for a front tracking approach to this problem uUsfogetion
formulation to treat the interface boundary conditions. See [22] and [24] for level set ba:
and volume of fluid based (respectively) approaches to this same problem also usir
8-function formulation. References [11, 22, 24] solve an equation for the temperature
order to determine the rate at which one material is converted into another.

As another example of reacting interfaces, consider combustion in premixed flam
Assuming that the flame front is infinitely thin allows one to treat the flame front as a di
continuity separating two incompressible flows. The unreacted material undergoes reac
as it crosses the interface producing a lower density (higher volume) reacted material.
[20] for a front tracking approach to this problem usintyfainction formulation. The flame
speeds in [20] were determined with the aid of the G-equation [14, 25], so an extra equa
for the temperature was not needed.

In the examples mentioned above, the density of the incompressible material tends t
different on different sides of the interface. The material must instantaneously expand ¢
crosses the interface implying that the normal velocity is discontinuous across the interfz
i.e. in addition to discontinuity of the density, viscosity, and pressure. The methods in [:
20, 22, 24] are all based on thdunction formulation and thus smear out this velocity jump
forcing a continuous velocity field across the interface. This can be quite problematic si
this numerical smearing adds a compressible character to the flow field near the interface
the divergence-free condition is not exactly satisfied in each separate subdomain. In addi
difficulties arise when trying to determine the interface velocity which depends in part
the local velocity of the unreacted material. Near the interface, the velocity of the unreac
material contains larg®(1) numerical errors where it has been nonphysically forced t
be continuous with the velocity of the reacted material. Partial solutions to these proble
were proposed in [9] where the authors were able to remove the humerical smearing of
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normal velocity obtaining a sharp interface profile. Unfortunately, the interface treatmen
[9] was considerably intricate and the calculation had to be terminated if two flame frol
were significantly close to each other, i.e. this method cannot handle the simple mergin
flame discontinuities. On the other hand, this method was used to obtain rather impres
resultsin [10] for problems in which the flame fronts do not merge or become highly curve

In this paper, we propose a new numerical method for treating two-phase incompress
flow where one phase is being converted into the other. This method was designed &
extension of the Ghost Fluid Method [4] and relies heavily on the boundary conditi
capturing technology developed in [13] for the variable coefficient Poisson equation an
[12] for multiphase incompressible flow. Our new numerical method admits a sharp interf:
representation similar to the method proposed in [9]. In addition, the interface bound
conditions are handled in a simple and straightforward fashion making the code very rok
e.g., no special treatment is required to treat the merging of flame fronts. Numerical res
are presented in one, two, and three spatial dimensions.

2. EQUATIONS

2.1. Euler Equations

The basic equations for inviscid incompressible flow are

p+V-Vp=0 1)
w+V-vut+ oo @)
0
wAV Vot 20 ©)
0
7 Pz
w+V - vu+ 2o (4
0

wheret is the time, X, y, 2 are the spatial coordinates,is the densityV = (u, v, w) is
the velocity field,p is the pressure, and = (-, (f’—y 2). In addition, the divergence-free
conditionisV - V = 0. The equations for the velocities can be written in condensed notati
as a row vector

\7+(\7.v)\7+%=0. (5)

2.2. Interface Velocity

When treating multiphase incompressible flow, one needs an expression for the velo
W, of the interface. If the interface is a simple contact discontinuity, then the interfa
moves with the local fluid velocity only, i.eW = V. Many numerical methods use only
the normal velocity of the interface, i.ay = DN whereD is the normal component of
the interface velocity antl = {ny, Ny, N3) is the local unit normal to the interface. In the
case of a contact discontinuit, = Vy = V - N.

Throughout this textunreactedandreactedincompressible flows are separated by ar
interface across which the unreacted material is converted into the reacted material. The
and ‘r” subscripts are used to refer to the unreacted and reacted materials, respectively.
normal component of the interface velocity is calculated by adding the unreacted local fl
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velocity to the flame spee®, Thatis,D = (Vn)u + Swhere(Vy)y is calculated using the
velocity of the unreacted material only. This is important to note sificés discontinuous
across the interface.

In the numerical examples, the flame speed is definédl-ass, + o«, whereS, ando
are constants andis the local curvature of the interface.

2.3. Jump Conditions

Conservation of mass and momentum implies the standard Rankine—Hugoniot ju
conditions across the interface

[p(Vn —D)] =0 ©)
[p(Wn = D)*+ p] =0, 7

where [A] = A — A, defines “[]” as the jump in a quantity across the interface. Wher
D # Vy, the tangential velocities are continuous as well, i¥g,][= [V+,] = 0, whereT;
andT, are the unit tangent vectors. This is true as lon®a&0, i.e., it is true as long as
the front is not a contact discontinuity. In the case of a contact discontiriiityQ and
the tangential velocities are completely uncoupled across the interface reducing equat
6 and 7 to ¥n] = [p] = 0. For more details, see [5].

Denoting the mass flux in the moving reference frame (sjizely

M = or (VN)r — D) = pu((Vn)u — D) 8)
allows Eq. (6) to be rewritten as{] = 0. Furthermore,
M= —p,S )

follows from substitutingD = (Vn)u + Sinto Eqg. (8).
Starting with D] = 0,

VW —p(Vn—D
[p N — (VN )} —0 (10)
)
Vy — M
[L} =0 (11)
1)
and
1
WEH 12)
P
where the last equation follows sindél] = 0. It is more convenient to write
- 1] -
[VI=M [—} N (13)
0

as a summary of Eq. (12) and4,] = [Vy,] = 0. Taking the dot product of Eq. (13) and
results in Eq. (12), while taking the dot product of Eq. (13) &ndr T,, results in /r,] = 0
and [Vr,] = 0, respectively.

Equation (7) can be rewritten as

2
[M - p} =0 (14)
Jo
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or as
(7l = -] | 15)
0
again using M] = 0.

2.4. Level Set Equation

The level set equation
¢ +W Vo =0 (16)

is used to keep track of the interface location as the set of points wher@. The unreacted
and reacted materials are then designated by the points whef@andp < 0, respectively.
Using¢ < 0 instead ofp = O for the reacted points removes the measure zero ambigui
of points that happen to lie on the interface. In this sense, the numerical interface lie
betweenp = 0 and the positive values @f and can be located numerically by finding the
zero level ofg. To keep the values af close to those of a signed distance function, i.e.
V| = 1, the reinitialization equation

¢ + S(¢o)(IVe| —1) =0 17)

is iterated for a few steps in ficticious time, The level set function is used to compute the
normal

Y
N= Y9 (18)
Vol
and the curvature
k=—V-N (19)

in a standard fashion. For more details on the level set function, see [4, 12, 15, 19].

3. NUMERICAL METHOD

A standard MAC grid is used for discretization, whexg «, oi j« ande; j « exist at the
cell centers (grid points) ang.1/2 j k, Vi, j+1/2.k, andw; j k+1/2 €Xist at the appropriate cell
walls. See [7] and [18] for more detalils.

3.1. Extending the Velocity Field

Since the normal velocity is discontinuous across the interface, one has to use cat
when applying numerical discretizations near the interface. For example, when discreti:
the unreacted fluid velocity near the interface, one should avoid using values of the rea
fluid velocity. Following the Ghost Fluid Methodology in [4], a band of ghost cells on th
reacted side of the interface is populated with unreacted ghost velocities that can be |
in the discretization of the unreacted fluid velocity. Similarly, reacted ghost velocities ¢
defined on a band of ghost cells on the unreacted side of the interface and used ir
discretization of the reacted fluid velocity.
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The termyp is defined at the grid nodes, and its values on the offset MAC grid are comput
with simple averaging, e.gi 112,k = 22k The MAC grid values of can then
be used to determine which values of the velocity field correspond to unreacted mate
and which correspond to reacted material. At each MAC grid location that correspond:
a reacted fluid velocity, the jump conditions in Eq. (13) are used to define a new unreac
ghost velocity according to

1 1

uuezur—M<—)n1 (20)
Pr Pu
1 1

vf:vr—M<———>n2 (21)
Pr Pu

and

1 1

W = w, — M (— - —)ng, (22)
Pr Pu

wheren;, ny, andnz are computed at the appropriate MAC grid locations using simpl
averaging, €.g(ny)i 12 jx = Pkt MWisiik Similarly, reacted ghost velocities are cal-
culated at unreacted MAC grid locations using

1 1

urG=UU+M<———>n1 (23)
Pr Pu
1 1

U9=UU+M(—>n2 (24)
Pr Pu

and

1 1

we =w, + M (— — —) na. (25)
Pr Pu

3.2. Level Set Equation

The level setfunction is evolved in time frapfl to ™! using nodal velocitiedV = DN,
whereN is computed at each grid node using Eq. (18) as described in [12]. In geDetal,
(VN)u + Swhere(Vy), is the normal velocity of the unreacted material 8w S, + o«
is the flame speed. B depends on the local curvature of the front, ice# 0O, thenW is
splitinto a purely convective componeéM, = ((Vx)y + S$)N and a curvature component
ok N so that Eq. (16) can be rewritten as

¢+ We - Vo = ok |V, (26)

with the curvature term isolated on the right-hand side. Théndiscretized according to
Eqg. (19) as discussed in [12], afdg| is discretized with standard central differencing.
It is interesting to note that an alternate definitior\ﬁzﬁ; =Vu+ SJIQ can be used in Eq.
(26) as well. Both of the two nonequivalent definitionsWif, give the same result in the
dot prodchc. V¢ since they only differ in the direction tangential ¥ap.

The normal velocity of the unreacted materi@Vy )y, is heeded in a band about the
front so that Eq. (26) can be solved locally to update the interface location. The no
values of the unreacted velocity,,, are determined using simple averaging of the MAC
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grid values making use of the appropriate ghost values (defined above) where needed
Uj jg = SRHCEURIRIC o MIZKE NI gndu; | = w are used to
calculate the nodal values of the unreacted velocity. Thgn, = V, - N is used to define
the unreacted normal velocity at each grid node.

Detailed discretizations for the convective part of Eq. (26),\:’5&. ; Vo, andfor Eq. (17)
are given in [4]. Note that the fifth-order WENO discretization from [4] is used to discreti:
the convective part of Eq. (26) and the spatial terms in Eq. (17) for the numerical examy
in this paper.

3.3. Projection Method
First,\7* = (u*, v*, w*) is defined by

- -

* n

V* -V ..
— 4+ (V-V)V=0, 27
AT + ( ) (27)

and then the velocity field at the new time stef¥;1 = (U1, v, w1y s defined by

vrt-ve Ve

0, 28
At P (28)

so that combining Egs. 27 and 28 to elimingteresults in Eg. (5). Taking the divergence
of Eq. (28) gives

v.(“’)zv'v (29)
0 At

after settingv - V" to zero. Equations (28) and (29) can be rewritten as

R . Vp*
vt _ve 4 P g (30)
0
and
vp* §
V-< p):v-v* (31)
0

eliminating their dependence axt by using a scaled pressung; = pAt. See [3, 7, 18]
for more details.

3.4. Convection Terms

The MAC grid storesu values a1z j k- Updatingu’,, , ;  in Eq. (27) requires the
discretization ofV - Vu at Xi+1/2 j k. First, simple averaging can be used to defihat
Xi+1/2,jk 1-€.,

Vi,j—3k T UL+ k Vi -k T Vignjadk
i+3.0.k 4
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FIG. 1. Stationary flame.
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FIG. 2. Stationary flame with a poor choice of initial data.
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FIG. 3. Merging flames.
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FIG. 4. Separating flames.
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x-velocity (t=0) x-velocity (t=.1)

x-velocity (t=.21) x-velocity (t=.25)

00

FIG. 5. Merging planar flames in two spatial dimensions.

and

Wi jk-1 T Wijked T Wigrjr-i + Wit jktd
Wil = (33)
i+3,].k 4

definev andw atX;1/2 j x While u is already defined there. Then tkle Vu term on the
offsetXi+1/2,j x grid can be discretized in the same fashion a37th@¢ term on the regular
%i.j.k grid using the method outlined in [4] for Eq. (16). The tergig, ; ,  andw’; .1,
are updated in a similar manner. For more details, see [12]. Note that the third-order E
discretization from [4] is used in the examples section.

It is important to note that the ghost values of the extended velocity field are used
this discretization of/*. That is, unreacted fluid velocities are discretized with the aid o
the unreacted ghost velocities avoiding the use of any reacted velocities that would pol
the solution. Similarly, the reacted fluid velocities are discretized using their ghost valt
avoiding the unreacted fluid velocities in the discretization.

Once again, using the GFM philosophy [4], values\7(‘grand\7;k are determined on the
appropriate side of the interfae@don a band including the interface. For examﬁg,is
computed on both the unreacted side of the interface and on a band of ghost cells or
reacted side of the interface. This is done to alleviate problems that occur when the inter
moves through the grid, changing the character of the solution from unreacted to reacte
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FIG. 7. Large amplitude perturbation—time evolution.
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FIG. 8. Large amplitude perturbation—converging to diverging velocity field with a discontinuous norm:
velocity across the interface.

vice versa. As the interface moves, as dictated by the evolutigf tf ¢"*1, one always
has appropriate values f&f), andV; where needed.

3.5. Poisson Equation

OnceV* has been updated with Eq. (27), the right-hand side of Eq. (31) is discretiz
using standard central differencing, e.g.,

u u

* T
i+3,j.k i—3.7.k

AX
is used to compute;. Once again, the ghost values of the extended velocity fields are us
to compute these derivatives so that unreacted and reacted velocities are not incorr
mixed. Then the techniques presented in [13] for the variable coefficient Poisson equa
are used to solve Eq. (31) for the pressure at the grid nodes. The resulting pressure is
to find V"1 in Eq. (30), taking care to compute the derivatives of the pressieraatly
the same way as they were computed in Eq. (31) using the techniques in [13].
Thetechniquesin[13]require alevel setfunction to describe the interface location. We
¢"+1asopposedip”, since we wish to find the pressure that will make! divergence-free
in Eq. (30). This implies that both Egs. (30) and (31) should pisg = p(¢"*1) when
deciding whether to usg, or pr at a specific grid point.

Ui jk = (34)
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vorticity contour (t=0)
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FIG. 9. Flame vortex interaction—initial flame and vortex locations.

Note that one can se%{] = [%] = [%] = 0 when solving the Poisson equation using
the method in [13]. Since the full Egs. (2), (3), and (4) are continuous across the interfe
one can take the divergence of the full equations without considering jump conditions.
the other hand, the jump in pressure defined in equation 15 needs to be accounted for \
solving the Poisson equation with the method in [13]. Equation 15 is rewritten as

()= —atw? (2~ ) (35)
Pr Pu
for use Eq. (31). The*] is computed at each grid node.

After discretizing the Poisson equation for the pressure, the resulting system of |
ear equations is solved with a preconditioned conjugate gradient (PCG) method usin
incomplete Choleski preconditioner [6]. The PCG algorithm is applied once for every Eu
time step, or a total of three times for a third-order Runge—Kutta cycle.

3.6. Runge—Kutta

Since both second- and third-order TVD Runge—Kutta schemes [21] can be written
convex combination of simple Euler steps, see [12, 21], it is straightforward to general
the first-order time discretization discussed so far to third-order TVD Runge—Kutta. O
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FIG. 10. Flame vortex interaction—time evolution.

difficulty in implementing Runge—Kutta methods in problems with interfaces arises wh
nodal values change character as the interface moves (e.g., one may inadvertently
age unreacted and reacted velocity values). However, the use of the Ghost Fluid Met
circumvents this difficulty.

While the values of the level set can be averaged directly, one has to be careful w
averaging the velocity field in order to ensure that unreacted and reacted velocities are
accidently averaged together. InitiallgiU is defined on one side of the interface avid
is defined on the other. Each of these velocity fields can be extended to a band abou
interface using the appropriate jump conditions as outlined above. It is straightforwarc
use Eqg. (27) to obtaiﬁ’ﬁ and\7;‘ in the appropriate locations including a band about the
interface. However, solving Eq. (28) f@lﬂ*l and\ﬁ/;1+l only gives updated velocity values
on the appropriate side of the interface and does not give valid valuls'rflgfé')randv{”rl on
a band including the interface. If the timevalues and tima + 1 values represent different
Runge—Kutta stages, they cannot be averaged unless tha tinievalues are extended to
include a band about the interface. Luckily, we can easily extend these valuesto aband a
the interface using our standard velocity extension procedure outlined above. The poil
that one should apply Runge—Kutta averaging to the extended velocity fields in orde
avoid unwanted errors that can result from mixing the unreacted and reacted velocity fie
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FIG. 11. Flame vortex interaction—grid refinement.

3.7. Adaptive Time Stepping

Adaptive time stepping is used where the overall time step is chosen as the minimur
the incompressible time step and the level set time step, i.e.,

At = .5min(at', Ath) (36)

where we have chosen a CFL restriction of 0.5. For incompressible flow, the convect
time step restriction

ul vl fwl
At [ = = = 1 37
<Ax + Ay + Az) = 37)

needsto be satisfied at every grid point. For the level setequation, i.e., Eq. (26), the conve
time step restriction

At"(Cen + Kep) < 1 (38)

needs to be satisfied at every grid point where

lwi|  |wz| = |wa]
Cfl=—+— +—, 39
o= Ax T Ay t Az (39)
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vorticity contour (t=1.5)

4
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FIG. 12. Flame vortex interaction—secondary vorticity generation.

with Wc = (w1, wa, wa) is for the convection terms and

K 2 + 2 + 2 (40)
=0
“ (A2 " (Ay)2 ' (A2)?
is for the curvature terms.
4. EXAMPLES

In the one-dimensional examples, the Conjugate Gradient method is used without
incomplete Choleski preconditioner, since the incomplete Choleski factorization does
work in the one-dimensional case. All of the two dimensional examples utilize the PC
method with the incomplete Choleski preconditioner. Unless otherwise specified, the ur
acted and reacted densities age= 1 andp; = 0.2, respectively.

4.1. One Spatial Dimension

All of the one dimensional examples are computed with 100 grid points enlaf]
domain. Exact solutions are shown as solid lines in the figures.

4.1.1. Example 1

Consider a flame with speegi= 1 initially located atx = 0. The unreacted gas flows
in from the right with a velocity ou = —1. A Dirichlet, p = 0, boundary condition is
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vorticity contour (t=1.9)

4 1 1 1 1 ]
0 1 2 3 4 5

FIG. 13. Flame vortex interaction—secondary vorticity generation; 140 by 280 grid.

specified on the left-hand side of the domain, and a Neumann pressure boundary conc
is used on the right-hand side of the domain to keep the inflow velocity fixed. Figure 1 shc
the computed solution for this stationary flame. The calculation for Fig. 1 may seem rat
trivial, since the initial data is already the exact solution. In Fig. 2, the same calculatior
carried out starting with erroneous initial data. Even with this poor initial guess, the corr
solution is still obtained.

4.1.2. Example 2

Consider two flames both with spe&d= 1 initially located atx = —0.5 andx = 0.5.
The unreacted material is at rest in the center of the domain. Dirichlet,0, bound-
ary conditions are specified at both ends of the domain. Initially, the reacted velocities
the left- and right-hand sides of the domain were specified &2s—4 andu = 4, respec-
tively. Figure 3 shows the computed velocity, and illustrates the ability of our algorith
to treat merging in one dimension. After merging, the domain contains a single-phase
compressible fluid which must have a constant velocity. In the case of compressible fl
a finite speed of propagation rarefaction wave would lower the velocity to the averz
of the two reacted velocities (zero in this case). For incompressible flow, the “rarefact
wave” moves at infinite speed and the velocity drops to zero in one time step as show
Fig. 3.
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vorticity contour (t=1.9)

FIG. 14. Flame vortex interaction—secondary vorticity generation; 70 by 140 grid.

4.1.3. Example 3

Consider two flames both with spe&d= 1 initially located atx = —0.5 andx = 0.5.
The reacted material is at rest in the center of the domain and the unreacted materi
flowing in with speedu| = 4 from both boundaries. Dirichlep = 0, boundary conditions
are specified at both ends of the domain. Figure 4 shows the computed solution as the f
front travels outward.

4.2. Two Spatial Dimensions
4.2.1. Example 4

Consider two planar flames both with spe®8a- 1 initially located atx = 0.25 and

x =0.75 in a [Q 1] x [0, 1] domain with the unreacted material at rest in the cente
of the domain. Dirichlet,p = 0, boundary conditions were used on the right- and left
hand sides of the domain, i.e., in thedirection, and periodic boundary conditions were
used in they-direction. Initially, the reacted velocities on the left- and right-hand side
of the domain were specified b= (—4, 0) andV = (4, 0y, respectively. This exam-
ple is the two-dimensional equivalent of Example 2 above and illustrates the merg
of two planar flames in two spatial dimensions. Results fortftmmponent of the ve-
locity field are shown in Fig. 5 using a computational mesh with 50 grid cells in eac
direction.



BOUNDARY CONDITION CAPTURING METHOD 89

vorticity contour (t=1.9)

FIG. 15. Flame vortex interaction—secondary vorticity generation; 35 by 70 grid.

4.2.2. Example 5

In this example we consider the Darrieus—Landau instability 8ita 1 in a [, %] X
[0, Z] domain with 60 grid cells in each direction. The initial flame profile is a small arr
plitude cosine wave defined lyy= 0.005 co$5x) + . Thg unreacted material is flowing
in from the bottom of the domain with an initial velocity ¥f = (0, 1) and the reacted ma-
terial flowing out of the top of the domain with an initial veIocity‘Ejf: (0, 5). Dirichlet,
p = 0, boundary conditions were used in peirection, and periodic boundary conditions
were used in the-direction. The initial values ofip| were determined by placing 10,000
points (equally spaced in thedirection) on the flame front and computing the minimum
distance from this set of points to each Cartesian grid location where the values of the |
set are stored. The sign @fwas calculated by comparing each Cartesian grid location 1
y = 0.005 cog5x) + %.

The Darrieus—Landau instability results in exponential growth of the amplitude of t
flame, A(t) = A, expwt), where

kIM
w= <M ( 1+p“_”f_1) (42)
Put por Pr Pu

is the rate of exponential growth, e.g. see [9]. Figure 6 shows a plot of amplitude ver
time (labeledy = 5whereq = %) as compared to the exact solution. Initially there is som¢
disagreement, since we did not start out with the exact Darrieus—Landau velocity field,
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veloclty field (t=1.5)
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FIG. 16. Flame vortex interaction—velocity field.

instead used a piecewise constant approximation based on a planar flame profile as out
above. Others have noticed this same initial transient when using a planar approxima
for the initial velocity field [8]. Figure 6 shows the results wjth= %1 (labeledq = 4) and
pr = % (labeledq = 3), respectively; Note that the initial outflow velocity was changed tc
V = (0, 4) for theq = 4 case and t&% = (0, 3) for theq = 3 case.

Figure 7 shows the time evolution of the flame front for a large amplitude perturbati
defined byy = 0.2 cog5x) + £ fortheq = 5 case. The velocity field at the final timeto
0.2 seconds is shown in Fig. 8. The gas flow converges toward the cusp and diverges ¢
fromthe cusp, and the normal component of the velocity field is appropriately discontinuo
Note that the completely continuous velocity field shown in Fig. 6 of [20] damps out tt
severity of the converging to diverging nature of the velocity field as it crosses the interf
near the cusp.

4.2.3. Example 6

Consider a planar flame locatedyat= 7 in a [0 5] x [0, 10] domain. The unreacted
material is belowy = 7 and is initially at rest while the reacted material is flowing out of
the top of the domain with an initial velocity of = (0, 4). Dirichlet, p = 0, boundary
conditions were used on the top of the domain and fixed velocity Neumann bound
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velocity field (t=1.9)
10 1

FIG. 17. Flame vortex interaction—velocity field.

conditions were used on the bottom of the domain. Periodic boundary conditions w
used in thex-direction. To suppress the hydrodynamic instability development at shc
wavelengths, a curvature term was added to the flame speed to 8btain+ .1«.

Inorderto simulate flame vortex interaction, aninfinite array of Oseen vortices were ad
to the unreacted material centered at spatial locatiofis,of) = (2.5 + 5k, 5.5), wherek
is an integer. This adds only one vortex to the computational domain g = (2.5, 5.5)
as shown in Fig. 9, and accounts for the periodicity of the domain inxtdéection.
Vortices very far away have little effect on the computational domain so our initial data or
accounts for the velocity prescribed by the vortices wis00 < k < 500. Each vortex is
best expressed in polar coordinates with zero velocity in the radial direction and

Vj = % (1 —~ exp<—;>) (42)

in the counterclockwise angular direction, wheiie the distance from the vortex core. The
initial velocity of the unreacted material is determined by summing the contribution fro
each of the 1001 vortices considered. See [20] for more details.

Figure 10 shows the time evolution of the flame front for a 140 by 280 grid ce
computation illustrating how the counterclockwise vortices distort the flame front. Tl
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FIG. 18. Flame vortex interaction—total vorticity in the unburnt gas.

wrinkled wave travels along the flame front from left to right as the flame propagat
through the array of vortices. Since the portion of the flame with positive slope is stee
than that with negative slope, the magnitude oftkmomponent of its flame speed is larger.
Consequently, the intersection point between these two flame segments tends to mo
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FIG. 19. Flame vortex interaction—total vorticity in the burnt gas.
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FIG. 20. Flame vortex interaction—totaborticity| in the burnt gas.

the right. This traveling wave slows down later as the deformation becomes more syr
rical. In Fig. 11, we show the results compared to those obtained after one level and
levels of grid coarsening. Note the first-order accurate convergence for the flame locat
As the flame moves downward and is distorted by the initial vortex, secondary vortic
is generated behind the flame front. Figure 12 shows the flatne dt5 where part of the
vortex has passed through the flame front and part of it can still be seen just below the fle
The secondary vorticity is positive on the right and left where the flame front has negat
slope. Conversely, the secondary vorticity is negative in the center where the flame front
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FIG. 21. Merging circular flames—time evolution of the flame location.
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FIG. 22. Merging circular flames—uvelocity field before merging.

positive slope. In Fig. 11 dt= 1, the flame surface is perturbed with the disturbed middIe
segment having a positive slope. This orientation is due to the counterclockwise rotat

of the vortex. This flame o
with alternating signs on

rientation subsequently generates a triple vorticity configurati
the burnt side of the flame characterized by positive vortic

behind the negatively sloped segments and negative vorticity behind the positively slo

segments. The highest vo

rticity is found to be at the flame tip where the flame front is m

wrinkled. With further flame wrinkling, the magnitude of this flame-generated vorticit
rapidly becomes higher than that of the initial vortex. Thus, as the flame propagates thro
the vortex, it continuously eliminates the initial radially symmetric vorticity substituting
it with the triple vorticity configuration until the initial vortex core is totally wiped out at
t = 1.9. Figure 13 shows the secondary vorticity at a later time-6f1.9. To get some idea

velochy flold (1=.035)

".~.-t\‘l||\\|“‘{ it rareraraneos
R SRS R R N | Lbttereeveranes.
RS IR RS S LPtteteerroeenes

ssf 11T izl

2: ] JNNPONIN vbrrreen
...~~\\\\\\\\\\\\§ L2t1712s0000vee..
EIIINNNHRNAN B At
2R3 RLN] PP, wse

0BEIIIIIIda NS 1027777750552 22200
N R A R M L P gy e oo I/l/// PP rrr s rmennn
-~~s~\s\\\\::t.\\\ //I"/.://;;a‘—---
RN S Y (N - ”, -

0.7FIIIIIINRINNSL B 27ttt
S ] ‘e . PP P 0o e e

L R
N

08

. B e
TGN S .
OBF-CIIITTTT ; ; ,......“:-““
; * ingminiainieg
AR A i S 22222
St ok U] werel o e
2] bttt tree RSy e SaeaiIIiT
Fromorooooro i sveste Ve R e
SR N NP R o A
A e AN MEEBEP ORI AR RS
Seeroan .- ccserrsene o ARINNNSN S s
7Y o AN
- Y DRREY I g NI
02222222000 7070777) TN
ceverrert???4 Mnn
~vvecrrrsrrrrr Tt mnn
2 cceervrrrrtt1rtl BN
Otk crrrersarsiinyy N
cevevevivtrrsgy nin
cececetssttlany N
ceccestrrtsasit *““
ok cereatited) A » b
. 05 !

FIG. 23. Merging circular flames—uvelocity field after merging.
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FIG. 24. Merging circular flames—uvelocity field later in time.

of how the vorticity behaves at different levels of grid resolution, Figs. 14 and 15 show
vorticity att = 1.9 obtained with one level and two levels of grid refinement, respectivel

Finally, Figs. 16 and 17 show the velocity fields at 1.5 andt = 1.9, respectively, for the
coarsest 3% 70 grid.

In order to see how the secondary vorticity generation proceeds in time, Figs. 18 anc
show the total vorticity in the unreacted and reacted regions, respectively, as a functio
time. Note that there is an initial startup error in the vorticity (and velocity) since the arr
of vortices are only initialized in the unburnt gas. This initial transient dies out quickly ar
could be avoided by initializing the vorticity in the burnt gas as well. Finally, since bof

lavel se! contour (t=.05)
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FIG. 25. Merging circular flames—agrid refinement.
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positive and negative vorticity increases the local turbulence, Fig. 20 shows the sum of
magnitudeof vorticity in the reacted material as a function of time.

4.2.4. Example 7

Consider two circular flames centered @&t y) = (.6, .5) and (x, y) = (.9, .5) both
with radiusr = .1 in a [0, 1.5] x [0, 1] domain with the reacted material inside the cir-
cles and the unreacted material outside the circles. The flame speed is giv@&g- by
1+ .01, and Dirichlet,p = 0, boundary conditions were used on all sides of the domair
Figure 21 shows the time evolution of the flame front for 2680 grid cell computation.
Figures 22, 23, and 24 show the velocity fields at different points in time. Note that t
topological change (merging) requires no special treatment. Figure 25 shows the comf
tion results for the 66« 40 grid cell computation along with those obtained after one leve
and two levels of grid refinement. Note the first-order accurate convergence for the fla
location.

4.3. Three Spatial Dimensions
4.3.1. Example 8

Consider two spherical flames centeredaty, z) = (.6, .5, .5) and(x, y, 2) = (.9, .5,
.5) both with radiusr = .1 in a [0 1.5] x [0, 1] x [0, 1] domain with reacted material
inside the spheres and unreacted material outside the spheres. The flame speed is
by S=1+ .01, and Dirichlet,p = 0, boundary conditions were used on all sides of
the domain. This is the three dimensional equivalent of Example 7. Figure 26 shows
evolution of the flame front in time for a 99 60 x 60 grid cell calculation illustrating the
ease of merging in three spatial dimensions.

level set (t=0) Jeve! set (1=.02)
60 60
50 50
" ®©e® o
30+ 30
20+ 6  20- 60
10- IEg 10- Fg
T T T Y r T T T
20 40 & 80 20 4 60 8
jevel set (t=.036)
60 - 60~
50 - 50-
40 40+
30 30
20 60 20 €0
10 :g 10+ F;g
T T . T T T . T
20 40 € & 20 4 60 80

FIG. 26. Merging spherical flames.
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5. CONCLUSION

Anew simple numerical method based on the level set method and ghost fluid method
developed to simulate two-phase incompressible flow where one material is being conve
into another. We presented this method in the context of premixed flame simulations.
flame was assumed to be a surface of discontinuity separating the reacted and unre
gases, and propagating with a prescribed flame velocity. The incompressible Euler equa
were solved on a stationary finite difference grid for both the reacted and the unreacted g:
The velocity and other material properties were modeled with jump discontinuities acr
the flame front where appropriate.

We demonstrated the accuracy and fidelity of the method by comparing the numer
results with exact solutions for a steady flame and the Darrieus—Landau instability.
robustness of the method was demonstrated by the simplicity with which flame fronts
merge. The method is fairly easily to implement and was extended to three spatial dirr
sions to treat a simple merging problem. Using this new numerical method, we studied
interaction of a flame and vortex with the objective of gaining further insight into the fund
mental mechanisms governing flame generated vorticity resulting from baroclinic torgt

REFERENCES

1. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tedsi©omput.
Phys.100, 335 (1992).

2. Y.C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturi
methods for incompressible fluid flowd, Comput. Physl24, 449 (1996).

3. A. J. Chorin, numerical solution of the Navier—Stokes equatigiagh. Comp22, 745 (1968).

4. R. Fedkiw, T. Aslam, B. Merriman, and S. Osher, A non-oscillatory Eulerian approach to interfaces
multimaterial flows (the ghost fluid method), Comput. Physl52 457 (1999).

5. R. Fedkiw, T. Aslam, and S. Xu, The ghost fluid method for deflagration and detonation discontinuiti
J. Comput. Physl54, 393 (1999).

6. G. Golub and C. Van LoaMatrix ComputationgJohns Hopkins Press, Baltimore, 1989).

7. F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fl
with a free surfacePhys. Fluids8, 2182 (1965).

8. B. T. Helenbrook, personal communication.

9. B.T.Helenbrook, L. Martinelli, and C. K. Law, A numerical method for solving incompressible flow problern
with a surface of discontinuityl. Comput. Physl48 366 (1999).

10. B. T. Helenbrook and C. K. Law, The role of Landau—Darrieus instability in large scale fBawmsbustion
Flame117, 155 (1999).

11. D. Juric and G. Tryggvason, Computations of boiling flows,J. Multiphase Flow24, 387 (1998).

12. M. Kang, R. Fedkiw, and X.-D Liu, A boundary condition capturing method for multiphase incompressit
flow, J. Sci. Computl5, 323 (2000).

13. X.-D. Liu, R. P. Fedkiw, and M. Kang, A boundary condition capturing method for Poisson’s equation
irregular domains). Comput. Physl54, 151 (2000).

14. G. H. MarksteinNonsteady Flame PropagatigRergamon, Oxford, 1964).

15. S.OsherandJ. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hanr
Jacobi formulations]). Comput. Physz9, 12 (1988).

16. C. Peskin, Numerical analysis of blood flow in the heRr€omput. Phy25, 220 (1977).

17. C. Peskin and B. Printz, Improved volume conservation in the computation of flows with immersed ela
boundaries). Comput. Physl05 33 (1993).

18. R. Peyret and T. D. TayloGomputational Methods for Fluid FlogSpringer-Verlag, New York, 1983).



98 NGUYEN, FEDKIW, AND KANG

19. M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompres
two-phase flow,). Comput. Physl14, 146 (1994).

20. J. Qian, G. Tryggvason, and C. K. Law, A front method for the motion of premixed flam@emput. Phys.
144, 52 (1998).

21. C. W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock capturing scher
J. Comput. Phys/7, 439 (1988).

22. G. Son and V. K. Dir, Numerical simulation of film boiling near critical pressures with a level set metho
J. Heat Transfefl20, 183 (1998).

23. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flow
J. Comput. Physl00, 25 (1992).

24. S. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase char@emput. Phys.
160, 662 (2000).

25. F. A. Williams,The Mathematics of Combusticedited by J. D. Buckmaster Soc. for Industr. of Appl. Math.,
Philadelphia, 1985, pp. 97-131.



	1. INTRODUCTION
	2. EQUATIONS
	3. NUMERICAL METHOD
	4. EXAMPLES
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.
	FIG. 21.
	FIG. 22.
	FIG. 23.
	FIG. 24.
	FIG. 25.
	FIG. 26.

	5. CONCLUSION
	REFERENCES

